Search results

1 – 2 of 2
Article
Publication date: 18 August 2021

Hongyu Du, Rong Yang, Taochen Gu, Xiang Zhou, Samar Yazdani, Eric Sambatra, Fayu Wan, Sébastien Lallechere and Blaise Ravelo

The purpose of this paper is to introduce an innovative theoretical, numerical and experimental investigations on the HP NGD function. The identified HP NGD topology under study…

Abstract

Purpose

The purpose of this paper is to introduce an innovative theoretical, numerical and experimental investigations on the HP NGD function. The identified HP NGD topology under study is constituted by first order passive RC-network. The simulations and measurements confirm in very good agreement the HP NGD behaviors of the tested circuits. NGD responses with optimal values of about -1 ns and cut-off frequencies of about 20 MHz are obtained.

Design/methodology/approach

The identified HP NGD topology understudy is constituted by a first-order passive Resistor-capacitor RC network. An innovative approach to HP NGD analysis is developed. The analytical investigation from the voltage transfer function showing the meaning of HP properties is established.

Findings

This paper introduces innovative theoretical, numerical and experimental investigations on the HP NGD function.

Originality/value

The NGD characterization as a function of the resistance and capacitance parameters is investigated. The feasibility of the HP NGD function is verified with proofs of concept constituted of lumped surface mounted components on printed circuit boards. The simulations and measurements confirm in very good agreement the HP NGD behaviors of the tested circuits. NGD responses with optimal values of about −1 ns and cut-off frequencies of about 20 MHz are obtained.

Article
Publication date: 7 March 2023

Nour Mohammad Murad, Antonio Jaomiary, Samar Yazdani, Fayrouz Haddad, Mathieu Guerin, George Chan, Wenceslas Rahajandraibe and Sahbi Baccar

This paper aims to develop high-pass (HP) negative group delay (NGD) investigation based on three-port lumped circuit. The main particularity of the proposed three-port passive…

Abstract

Purpose

This paper aims to develop high-pass (HP) negative group delay (NGD) investigation based on three-port lumped circuit. The main particularity of the proposed three-port passive topology is the consideration of only a single circuit element represented by a capacitor.

Design/methodology/approach

The methodology of the paper is to consider the S-matrix equivalent model derived from admittance matrix approach. So, an S-matrix equivalent model of a three-port circuit topology is established from admittance matrix approach. The frequency-dependent basic expressions are explored to perform the HP-NGD analysis. Then, the existence condition of HP-NGD function type is analytically demonstrated. The specific characteristics and synthesis equations of HP-NGD circuit with respect to the desired optimal NGD value are established.

Findings

After computing the frequency expressions to perform the HP-NGD analysis, this study demonstrated the existence condition of HP-NGD function type analytically. The validity of the HP-NGD theory is verified by a prototype of three-port circuit. The proof-of-concept (POC) single capacitor three-port circuit presents an NGD response and characteristics from analytical calculation and simulation is in very good correlation.

Originality/value

An innovative theory of HP-NGD three-port circuit is studied. The proposed HP-NGD topology is constituted by only a single capacitor. After the topological description, the S-matrix model is established from the Y-matrix by means of Kirchhoff voltage law and Kirchhoff current law equations. A POC of single capacitor three-port circuit was designed and simulated with a commercial tool. Then, a prototype with a surface-mounted device component was fabricated and tested. As expected, simulation and measurement results in very good agreement with the calculated model show the feasibility of the HP-NGD behavior. This work is compared to other NGD-type function with diverse number of ports and components.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2